Internet Appendix A119: Ecological Economics

A119.1 Illustrative Reverse Engineered Pitch Template Example

Pitcher's Name	Manuel Siegrist	FoR category	Ecological	Date Completed	8/4/16
	$T: \mathbf{D} (1007) \mathbf{G} \mathbf{U} \mathbf{U} \mathbf{U} (\mathbf{U} \mathbf{U}) \mathbf{U}$		Economics	1	
(A) Title	Tipper, R. (1997), Scolet Te: International pilot project for carbon sequestration and community forestry in Chiapas, Mexico				
	https://web.archive.org/web/19990822211450/http://www.ed.ac.uk/~ebfr11/%20 [Reverse Engineered]				
(B) Basic Research	What is the potential of carbon sequestration via agroforestry and improved forest management in southern Mexico?				
Question					
(C) Key paper(s)	Brown et al., (1995). Establishment and management of forests for mitigation of greenhouse gas emissions. IPCC 1995 Assessment,				
	pp. 543-578.				
	De Jong et al., (1995). Community forest management and carbon sequestration, a feasibility study from Chiapas, Mexico.				
	Interciencia 20, pp. 409-416.				
(D) Motivation/Puzzle	The vast majority of climate scientists agree that the emission of greenhouse gasses (GHGs) is the main reason for the constant				
	increase in global temperature and its side-effects. The resulting externalities through human activity are considered to be the single				
	largest market failure. A wide range of meth	ods have been pr	roposed to reduce carbon	n emissions with forestry	being one. My goal is
	to assess the potential for creating carbon sin	nks via agrofores	try and improved forest	management, which wi	ll include an incentive-
	based model for local farmers to switch from	traditional farm	ing.		
THREE	Three core aspects of any empirical research project i.e. the "IDioTs" guide				
(E) Idea?	The approach in this paper is as follows: The	e results from a s	tudy that has estimated	responses from small fai	mers and communities
	in southern Mexico, which will be used as a	base. The study s	strives to estimate the lik	celihood of switching fro	om the current farm use
	to forestry and agroforestry, stimulated by an	n incentive in ord	ler to create carbon sink	s. Recent studies have su	uggested, that a modest
	incentive might lead to substantial shifts, see	eing that conven	tional farming is only n	narginally profitable. Th	e carbon storage in the
	assessed area has been almost continuously d	lepleting over the	e last decades, at around	-1.4% per annum (1974	-96).
	Having the results from the farmers and com	munities and the	related quantity of ince	ntives, one can estimate	the overall potential of
	carbon sequestered as well as the associated	costs (opportunit	ty, switching, and managed	gement). The projected l	and size is 600,000 ha.
	A key factor is to calculate the net present of	cost (NPC) to fai	rmers. If incentives offe	red are higher than the	NPC, the likelihood of
	farmers switching to forestry and agroforestr	y is high.			
(F) Data?	The study area will be the central highlands	of southern Mex	tico. This area represent	s a high biodiversity, va	rious forest formations
	(mostly extensive tree types: pine, pine oak a	and oak). Rainfal	l is abundant while the	general climate ranges fi	rom subtropical to sub-
	humid. Furthermore, around 80% of the land	is under a comm	unal form of tenure.		
	In order to understand historical trends in lan	nd use, satellite m	haps of the area are comp	pared in order to estimat	e the change over time.
	Through classification of different LU/LC	(Land use, Lan	d cover) classes, all th	ne areas on the satellite	e images are assigned
	accordingly and one can therewith estimate the carbon stock (carbon density of LU/LC x surface area). Historical trends also allow				
	to set the trajectory for the future, given the	composition of	the LU/LC's. Also, in c	order to gauge newly aff	forested areas, one will
	need comparable data with a baseline of non-	-intervention scen	narios.		

(G) Tools?	Construction of income-expenditure profiles for 12 alternative interventions (forests, agricultural, etc.). This will be based on the gained knowledge of the Scolel Té pilot project. The predisposition for farmers to switch relies on various socio-economic, as well
	as on cultural factors. The overall function to estimate the cost of carbon is as follows:
	$Cc = C_I + Cm + C_O$ - Bp where Cc equals cost of carbon sequestration (Present value), C_I equals implementation cost, Cm
	represents cost of management and service (PV), C ₀ equals opportunity cost (PV) and Bp is the revenue from timber sale and labor
	savings (PV). 10% will be used for the discount rate; while additionally a sensitivity analysis will be run, ranging from 5% to 40%.
TWO	Two key questions
(H) What's New?	Forest management/conservation, restoration, as well as transforming existing land into new forests (afforestation) are interesting instruments in combatting increasing CO2 levels and contributing to decarbonize countries. While pilot projects have been undertaken, reliable data for large-scale projects are still scarce.
(I) So What?	The carbon market is currently in a broken state. Since it will have to be fixed on the long run, projects like carbon sequestration via forests will become increasingly interesting and have the potential to contribute to stabilizing CO_2 concentration. It is therefore of utmost importance to be able to properly gauge the projected capacities this method entails.
ONE	One bottom line
(J) Contribution?	This interdisciplinary marriage between biology, geography, sustainability and economics is leveraging previously identified findings (Scolel Té) in order to determine the potential of carbon sequestration via forestry. This large-scale project could be a beacon for future developments worldwide.
(K) 3 Key Findings	Since this project is a merger of various disciplines, collaboration is not only desired, it might prove to be pivotal to the outcome. In order to verify the assumptions and potential outcomes, a range of experts will be participating, ranging from economists, ecologists, biologists to agronomists. Economic model simulators will be required to determine the success rate of farmers switching cultivation methods. Currently, there are no potential threats when it comes to competing journal articles in this rather unique field. Although the idea of using forests as carbon sinks is prominent, it has not attracted a lot of attention recently. Therefore, we assess the risk as moderate.