Internet Appendix A36: Phytology

Figure A36.1 Illustrative Pitch Template Example

This pitch is reverse engineered from the paper:

Bohman, B., Phillips, R. D., Menz, M. H., Berntsson, B. W., Flematti, G. R., Barrow, R. A., Dixon, K. W. and Peakall, R. (2014). Discovery of pyrazines as pollinator sex pheromones and orchid semiochemicals: implications for the evolution of sexual deception. New Phytologist, 203(3), 939-952.

Pitcher's name	Marita Smith	For category	Phytology	Date completed	27/5/15	
(A) Working Title	The chemistry of sexual deception in orchids					
(B) Basic Research	What are the organic compounds involved in the sexual deception strategy employed by orchids of the genus Drakaea?					
Question						
(C) Key paper(s)	Peakall, R. 1990. Responses of male Zaspilothynnus trilobatus Turner wasps to females and the sexually deceptive orchid it pollinates. Functional					
	Ecology 4: 159-167					
	Bohman, B., Jeffares, L., Flematti, G., Byrne, L. T., Skelton, B. W., Philips, R. D., Dixon, K. W., Peakall R. and Barrow, R. A. 2012. Discovery of					
	tetra-substituted pyrazines as semiochemicals in a sexually deceptive orchid. Journal of Natural Products 75: 1589 – 1594.					
	Peakall, R. and Whitehead, M. R. 2014. Floral odour chemistry defines species boundaries and underpins strong reproductive isolation in sexually					
	deceptive orchids. Annals of Botany 113: 341-355.					
(D) Motivation/Puzzle	Sexually deceptive orchids use volatile organic compounds to sexually lure pollinators. Specifically, these flowers lure the males of specific insect					
	species by producing volatile compounds that mimic the female sex pheromone. As such, these orchids are characterized by highly specific					
	pollination systems. Despite this specificity, this method of pollination has evolved independently on multiple continents, including Africa,					
	Australia, Europe and South America. This is astonishing considering the wide range of chemical compounds involved in each specific flower-					
	insect interaction. Of the few compounds that have previously been identified, it is apparent that a diverse range of chemical systems are involved in					
	these interactions. How and why these unique systems evolved is not well understood. Very few of the volatile organic compounds involved have					
	been identified and studied.					
THREE	Three core aspects of any empirical research project i.e. the "iDioTs" guide					
(E) Idea?	In order to more fully understand the phenomenon of sexual deception in orchids, it is necessary to examine the unique chemical systems involved					
	and to identify the individual compounds responsible. The Australian orchid genus Drakaea and its specific relationship with the male thynnine					
	wasp have never been examined in detail, providing a perfect study system.					
	Using gas chromatog	graphy coupled to electroantenno	ography (GC-EAI	D), it is possible to identify	y which of the many volatile organic compounds	
	are detected by the inse	ct antennae within a field enviror	nment. Once the c	compounds have been isol	ated, it is possible to chemically identify them	
	using gas chromatograp	by coupled to mass spectrometry	y (GC-MS). Ther	n, bioassays in the field ma	ay be used to confirm the biological activity of	
	individual compounds (or blends of compounds). Very l	little work has bee	en done to determine the f	unction of individual volatile organic compounds	
	released by orchids. By	combining the analytic capacity	of several differe	nt disciplines, it should be	e possible to identify and test the activity of a	
	range of volatile organic compounds.					

(F) Data?	- Sample collection of flowering specimens, 'baiting' for male thynnine wasps and collecting female thyninne wasps from adjacent shrubs					
	- Analysis using GC-EAD to identify target compounds					
	- Compound identification using GC–MS and NMR					
	- Chemical synthesis of target compounds					
	- Bioassays in the field using artificially presented flowers (as a measure of standard pollination) and the synthetic compounds dispensed onto a					
	dummy (dressmaker's pin with a 4mm-diameter black plastic head)					
	- Statistical analysis of results					
(G) Tools?	- Analytical equipment (GC-EAD, GC-MS, NMR) and organic synthesis laboratory					
	- Field equipment for bioassays during the short flowering period of the orchid (2 -3 weeks per year)					
	- Statistical software					
TWO	Two key questions					
(H) What's New?	The compounds used by <i>Drakaea</i> for sexual deception have never been identified or produced synthetically in a laboratory environment. This study					
	will provide novel data about the specific chemical mechanisms of the interaction between orchid and pollinator.					
(I) So What?	Sexual deception in orchids has long been a scientific novelty. Very few orchid genera have been characterized, and it is likely that the chemical					
	compounds involved are very diverse. The investigation of unusual pollination systems is important for the advancement of our understanding of					
	the role of chemistry in evolution.					
ONE	One bottom line					
(J) Contribution	The primary source of the contribution will be a range of novel organic compounds responsible for the specific orchid-wasp pollination achieved					
	using sexual deception by Drakaea.					
(K) Other	Is Collaboration needed/desirable?					
considerations	-Idea: no;					
	-Data; yes -multi-disciplinary and multi-institutional preferred (will need to conduct bioassays in a range of environments)					
	-Tools; yes –representatives and funding from various institutions					
	Target journals – Phytochemistry, New Phytologist					
	"Risk" assessment:					
	-"no result" risk: low. GC-EAD should provide a full description of the range of volatile compounds pollinators are able to discern. By using a					
	further battery of spectroscopic techniques, it is highly likely that these compounds will be successfully identified.					
	-"competitor risk" (i.e. being beaten by a competitor): low. This study will require the cooperation of multiple disciplines across several institutions,					
	requiring the input of several experts.					
	-risk of "obsolescence": Low. A study of this depth and magnitude has not been attempted in Australia before.					